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Abstract

In this review, we describe turbulent drag reduction in a variety of
flows using a universal framework of energy flux. In a turbulent flow
with dilute polymers and magnetic field, the kinetic energy injected
at large scales cascades to the velocity field at intermediate scales,
as well as to the polymers and magnetic field at all scales. Conse-
quently, the kinetic energy flux, Πu(k), is suppressed in comparison
to the pure hydrodynamic turbulence. We argue that the suppression
of Πu(k) is an important factor in the reduction of the inertial force
〈u · ∇u〉 and turbulent drag. This feature of turbulent drag reduction
is observed in polymeric, magnetohydrodynamic, quasi-static magne-
tohydrodynamic, and stably-stratified turbulence, and in dynamos. In
addition, it is shown that turbulent drag reduction in thermal con-
vection is due to the smooth thermal plates, similar to the turbulent
drag reduction over bluff bodies. In all these flows, turbulent drag
reduction often leads to a strong large-scale velocity in the flow.

Keywords: Turbulent drag reduction, Magnetohydrodynamic turbulence,
Energy flux, Dynamo, Quasi-static magnetohydrodynamics, Turbulent thernal
convection
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2 Turbulent Drag Reduction in MHD Turbulence

1 Introduction

It has been observed that an introduction of polymers and magnetic field
to a turbulent flow reduces turbulent drag [1–11]. Turbulence drag is also
suppressed over bluff bodies with particular shapes, e.g., aerofoils. This phe-
nomena, known as turbulent drag reduction, or TDR in short, depends on
many factors—properties of the boundaries and fluids, bulk turbulence, nature
of polymers, etc. In this review, using energy flux, we describe a univer-
sal framework to explain TDR in polymeric, magnetohydrodynamic (MHD),
quasi-static MHD, and stably-stratified turbulence, and in dynamo.

A pipe flow exhibits viscous drag at small Reynolds numbers, but it experi-
ences turbulent drag at large Reynolds numbers [12, 13]. It has been observed
that an introduction of small amount of polymers in the flow suppresses the
turbulent drag up to 80% [1–11]. In Fig. 1, we illustrate the mean normal-
ized velocity profiles (V +) as a function of normalized distance from the wall
(y+) in a hydrodynamic (HD) flow with and without polymers. The bottom
curve with green dots represents V + for pure HD turbulence and it exhibits
Kárman’s log layer, whereas the chained curve with red squares is for polymeric
turbulence and it shows TDR. L’vov et al. [6] constructed a phenomenological
model for the maximum drag reduction asymptote (represented by the chained
curve in the figure) that matches with numerical and experimental data quite
well. Study of TDR is particularly important due to its wide-ranging practical
applications. For example, firefighters mix polymers in water to increase the
range of fire-hoses. Also, polymers are used to increase the flow rates in oil
pipe, etc.

Fig. 1 For a wall-bound flow, mean normalized velocity profiles (V +) as a function of
the normalized distance from the wall (y+). The bottom curve with green dots is for pure
HD turbulence, whereas the chained-curve with red squares is for the polymeric turbulence.
From L’vov et al. [6]. Reproduced with permission from APS.
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Bluff bodies too experience viscous and turbulent drag at small and large
Reynolds numbers respectively. Turbulent drag over bluff bodies depend on
the surface properties, e.g., smoothness and curvature [14, 15]. Keeping these
factors in mind, airplanes, automobiles, missiles, and ships are designed to
minimize turbulent drag.

In a recent paper, Verma et al. [11] argued that TDR occurs in MHD
turbulence analogous to TDR in turbulent flows with dilute polymers. They
showed that the kinetic energy (KE) flux (Πu(k)) is suppressed in polymeric
and MHD turbulence due to the transfer of energy from the velocity field
to polymers and magnetic field respectively. The energy fluxes in polymeric
and MHD turbulence have been studied in a number of earlier works [1, 11,
16–19]. It was argued that the turbulent drag and the nonlinearity 〈u · ∇u〉
are proportional to Πu(k)/U , where u is the velocity field, U is the large-
scale velocity, and 〈.〉 represents averaging. Thus, Verma et al.’s [11] formalism
provides a general framework for TDR in variety of flows, including polymeric
and MHD turbulence.

An introduction of polymers or magnetic field in a turbulent flow enhances
the mean flow, but suppresses 〈u · ∇u〉 [1–11]. Verma et al. [11] observed the
above phenomena in a shell model of MHD turbulence. Note that 〈u · ∇u〉
and Πu(k) depend critically on the phase relations between the Fourier modes.
Verma et al. [11] argued that the velocity correlations in polymeric and MHD
turbulence are enhanced compared to pure HD turbulence. These correlations
lead to suppressed 〈u · ∇u〉 and Πu(k) in spite of amplification of U . Thus,
TDR, energy flux, and enhancement of U are related to each other.

Based on past results, Verma et al. [11] argued for TDR in quasi-static
MHD (QSMHD) turbulence [20, 21]. The Joule dissipation suppresses Πu(k) at
all wavenumbers [20–23], and hence Πu(k) for QSMHD turbulence is lower than
the corresponding flux for HD turbulence. In addition, large-scale U increases
with the increase of interaction parameter, thus indicating TDR in QSMHD
turbulence.

Generation of magnetic field in astrophysical objects, such as planets, stars,
and galaxies, are explained using dynamo mechanism [24–27]. Here, magnetic
field grows and saturates at some level due to the self-induced currents. In the
present review, we discuss TDR in dynamo using the energy flux. Based on
earlier dynamo simulations (e,g., [27, 28]), we show that the fluctuations in the
velocity and magnetic fields are suppressed when a large-scale magnetic field
emerges in the system. This feature signals TDR in dynamo.

Planetary and stellar atmospheres often exhibit stably stratified turbu-
lence. In such flows, lighter fluid is above the heavier fluid with gravity acting
downwards [29, 30]. The KE flux in stably stratified turbulence is suppressed,
as in polymeric and MHD turbulence. Based on these observations, we argue
for TDR in stably stratified turbulence.

Researchers have reported that compared to HD turbulence, viscous dissi-
pation rate (εu) and thermal dissipation rate (εT ) are suppressed in turbulent
thermal convection. For example, Pandey et al. [31] and Bhattacharya et al.
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[32] showed that εu ∼ (U3/d)Ra−0.2 and εT ∼ (U(∆T )2/d)Ra−0.2, where ∆T
is the temperature difference between the top and bottom thermal plates sep-
arated by distance d, and Ra is the Rayleigh number, which is the ratio of
buoyancy and diffusion in thermal convection. In addition, Pandey et al. [31]
observed that 〈u · ∇u〉 /(Ud/ν) ≈ ReRa−0.14, where Re is the Reynolds num-
ber. Thus, nonlinearity is suppressed in turbulent thermal convection. In this
review, we relate the above suppression of nonlinearity and dissipation rates
to TDR over bluff bodies. It has been argued that TDR in turbulent convec-
tion arises due to large-scale circulation (LSC) over thermal plates, and that
the smooth thermal plates affect bulk turbulence.

Thus, KE flux and 〈u · ∇u〉 provide valuable insights into the physics of
TDR. TDR is also related to the enhanced correlations in the velocity field.
The present review focusses on these aspects for a variety of flows—polymeric,
MHD, QSMHD, and stably-stratified turbulence; dynamo; and turbulent ther-
mal convection. Here, we focus on bulk turbulence, and avoid discussion on
boundary layers and smooth surfaces. The latter aspects are covered in many
books and reviews, e.g., [3–5, 10, 14, 15]. We remark that the energy flux is a
well known quantity in turbulence literature [33–37]. However, the connection
between the energy flux and TDR has been brought out only recently [11], and
the number of papers highlighting the above connection is relatively limited.

The increase in the mean velocity field during TDR is related to relami-
narization. Narasimha and Sreenivasan [38] studied relaminarization in stably
stratified turbulence, rotating turbulence, and thermal convection, and related
it to the reduction in 〈u · ∇u〉. Thus, the mechanism of relaminarization is
intimately related to the TDR.

An outline of this review is as follows. In Section 2 we briefly review viscous
and turbulent drag in a pipe flow and over a bluff body. In Section 3 we describe
a general framework for TDR using energy fluxes. In Section 4 we review the
energy fluxes in a turbulent flow with dilute polymers and relate it to TDR
in the bulk. Section 5 contains a framework of TDR in MHD turbulence via
energy fluxes. In Section 6 we describe signatures of TDR in direct numerical
simulations (DNS) and shell models of MHD turbulence. Sections 7 and 8
deal with TDR in dynamos and in QSMHD turbulence respectively. In Section
9 we describe TDR in stably stratified turbulence and in turbulent thermal
convection. We conclude in Section 10.

2 Viscous and turbulent drag in hydrodynamic
turbulence

The equations for incompressible hydrodynamics are

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fext, (1)

∇ · u = 0, (2)
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(a) (b) (c)

d

Fig. 2 Schematic illustrations of (a) pipe flow and (b) its viscous flow profile. (c) The profile
of the mean velocity in a turbulent pipe flow.

where u, p are respectively the velocity and pressure fields; ρ is the density
which is assumed to be unity; ν is the kinematic viscosity; and Fext is the
external force employed at large scales that helps maintain a steady state. An
important parameter for the fluid flows is Reynolds number, which is

Re =
UL

ν
, (3)

where L and U are the large-scale length and velocity respectively. For homo-
geneous and isotropic turbulence, Re is the ratio of the nonlinear term and
the viscous term. However, in more complex flows like polymeric turbulence,
MHD turbulence, and turbulent convection,

Nonlinear term

Viscous term
= fRe, (4)

where the prefactor f may differ from unity and may provide a signature
for TDR. For example, f ≈ Ra−0.2 for turbulent convection, where Ra is
the Rayleigh number [31]. We expect complex f for MHD and polymeric
turbulence.

A fluid moving in a pipe of radius d experiences drag (see Fig. 2). At low
Reynolds numbers, this drag is called viscous drag. In this case, under steady
state, the pressure gradient, −∇(p/ρ), which can be treated as Fext, matches
with the viscous term, ν∇2u. Hence, we estimate the viscous drag as [13, 39]

Fdrag ≈
νU

d2
. (5)

The proportionality constant is of the order of unity. At large Reynolds
number, the nonlinear term becomes significant, and hence [12–15],

Fdrag ≈
U2

d
+
νU

d2
, (6)
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apart from the proportionality constants. In the above formula, U2/d is the
turbulent drag that is larger than the viscous drag by a factor of Re. Clearly,
the turbulent drag dominates the viscous drag at large Re. Note that the above
drag force is in the units of force per unit mass; we will follow this convention
throughout the paper.

A related problem is the frictional force experienced by a bluff body in a
flow. Analogous to a pipe flow, a bluff body experiences viscous drag at small
Re, but turbulent drag at large Re. In literature, the drag coefficient is defined
as [13, 14]

Cd =
Fdrag

ρU2A
, (7)

where A is the area of the bluff body.
It is customary to describe fluid flows in Fourier space, where Eqs. (1, 2)

get transformed to [35–37]

d

dt
u(k) = −i

∑
p

{k · u(q)}u(p)− ikp(k)− νk2u(k) + Fext(k), (8)

where k, p, q are the wavenumbers with k = p + q; and u(k),u(p),u(q) are
the corresponding velocity Fourier modes. An equation for the modal energy
Eu(k) = |u(k)|2/2 is [35–37, 40]

d

dt
Eu(k) = Tu(k) + Fext(k)−Du(k), (9)

where

Tu(k) =
∑
p

= [{k · u(q)}{u(p) · u∗(k)}] , (10)

Fext(k) = <[Fext(k) · u∗(k)], (11)

Du(k) = 2νk2Eu(k). (12)

Here, <,= stand respectively for the real and imaginary parts of the argument;
Tu(k) is the nonlinear energy transfer to the mode u(k); Du(k) is the energy
dissipation rate at wavenumber k; and Fext(k) is the KE injection rate to u(k)
by the external force Fext(k).

We assume that the external force injects KE at large scales, e.g., in a
wavenumber band (0, kf ) with small kf . Therefore, the total KE injection rate,
εinj, is ∫ kf

0

dkFext(k) ≈ εinj. (13)

This injected KE cascades to intermediate and small scales as KE flux, Πu(K),
which is defined as the cumulative KE transfer rate from the velocity modes
inside the sphere of radius K to velocity modes outside the sphere. In Fig. 3,
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ky

Force Inertial Dissip-
ative

Πu(K )u<
u>

Πu(K )

u>

K F
D

uD u

kx

Fig. 3 An illustration of KE flux Πu(K). KE is injected into the small red sphere. Πu(K)
is constant in the inertial range, and it is dissipated at small scales with a dissipation rate
of Du. From Verma et al. [11]. Reprinted with permission from AIP.

we illustrate the inner and outer modes as u< and u> respectively. In terms
of Fourier modes, the above flux is [16, 37, 41, 42]

Πu(K) = −
∑
k≤K

Tu(k) =
∑
p≤K

∑
k>K

= [{k · u(q)}{u(p) · u∗(k)}] , (14)

where q = k− p.
The above energy flux is dissipated in the dissipative range, with the total

viscous dissipation rate as

εu =

∫
dkDu(k) =

∫
dk2νk2Eu(k). (15)

At large Reynolds numbers, it has been shown that in the inertial range [33,
35, 36, 43, 44],

Πu(k) ≈ εinj ≈ εu ≈
U3

d
. (16)

That is, the inertial-range energy flux, the viscous dissipation rate, and the
energy injection rate are all equal. Note that in the inertial range, Πu(k) = εinj

due to absence of external force and negligible viscous dissipation [33, 37, 40].
We show later that the magnetic field and polymers, as well as smooth walls,
suppress the energy flux relative to εinj. We argue that this feature leads to
TDR.
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For a steady state, an integration of Eq. (1) over a bluff body yields the
following formula for the drag force:

Fdrag =

∫
dr
[
(u · ∇)u +∇(p/ρ)− ν∇2u

]
. (17)

The viscous force dominates the inertial term near the surface of a bluff body.
Hence, for bluff bodies, the inertial term of the above equation is ignored.
Prandtl [15, 45] was first to compute Fdrag for a bluff body as a sum of viscous
drag and adverse pressure gradient. The drag forces for a cylinder and aerofoil
are computed in this manner [13–15].

Computation of Fdrag for a pipe flow is also quite complex involving many
factors—walls, fluid properties, bulk turbulence, Reynolds number, etc. In the
present review, we focus on the turbulent drag in bulk where we can ignore
the effects of walls. The above simplification enables us to compute turbulent
drag in many diverse flows—polymeric turbulence, MHD turbulence, dynamo,
liquid metals—using a common framework.

We focus on a turbulent flow within a periodic box for which
∫
dr∇(p/ρ) =

0. By ignoring the viscous drag, we deduce the turbulent drag as (see Eqs. (1,
17))

Fdrag = Fext =

∫
dr [(u · ∇)u] . (18)

Since the external force is active at large scales, under steady state,

〈Fdrag〉LS ≈ 〈|(u · ∇)u|〉LS ≈ 〈Fext〉 , (19)

where 〈.〉LS represents ensemble averaging over large scales. To estimate
〈Fdrag〉LS, we perform a dot product of Eq. (1) with u and integrate it over a
wavenumber sphere of radius kf (forcing wavenumber band) that leads to∫

LS

dr[Fext · u] =

∫
LS

dr[Fdrag · u] = f1UFdrag, (20)

with f1 ≈ 1. Under steady state, using Eqs. (9,14) we deduce that∫
LS

dr[Fext · u] = 〈|[(u · ∇)u] · u|〉LS = −
∫ kf

0

Tu(k′)dk′ = Πu(k). (21)

Therefore,

UFdrag ≈ Πu ≈
U3

d
≈ εinj, (22)

or

Fdrag ≈
Πu

U
≈ U2

d
. (23)

Note that the viscous dissipation can be ignored at large scales.
It has been observed that polymers and magnetic field suppress turbulent

drag. We detail these phenomena in the subsequent sections.
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3 General framework for TDR using energy flux

In this section, we describe a general framework for TDR in a turbulent flow
with a secondary field B. At present, for convenience, we assume B to be a
vector, however, it could also be a scalar or a tensor. The present formalism is
taken from Verma et al. [11].

The equations for the velocity and secondary fields are [11, 29, 37, 46]:

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fu(u,B) + Fext, (24)

∂B

∂t
+ (u · ∇)B = η∇2B + FB(u,B), (25)

∇ · u = 0, (26)

where u, p are the velocity and pressure fields respectively; ρ is the density
which is assumed to be unity; ν is the kinematic viscosity; η is the diffusion
coefficient for B; and Fu and FB are the force fields acting on u and B respec-
tively. Note that Fu and FB typically represent interactions between u and
B. The external field Fext is employed at large scales of the velocity field to
maintain a steady state.

Using Eq. (24) we derive the following equation for the KE density u2/2
(with ρ = 1):

∂

∂t

u2

2
+∇ ·

[
u2

2
u

]
= −∇ · (pu) + [Fu + Fext] · u− νu · ∇2u. (27)

In Fourier space, the equation for the modal KE, Eu(k) = |u(k)|2/2, is

d

dt
Eu(k) = Tu(k) + Fu(k) + Fext(k)−Du(k), (28)

where

Tu(k) =
∑
p

= [{k · u(q)}{u(p) · u∗(k)}] , (29)

Fu(k) = <[Fu(k) · u∗(k)], (30)

Fext(k) = <[Fext(k) · u∗(k)], (31)

Du(k) = −2νk2Eu(k), (32)

with q = k− p. We sum Eq. (28) over the u modes of the wavenumber sphere
of radius K that yields [37, 40]:

d

dt

∑
k≤K

Eu(k) =
∑
k≤K

Tu(k) +
∑
k≤K

Fu(k) +
∑
k≤K

Fext(k)−
∑
k≤K

Du(k).(33)



Springer Nature 2021 LATEX template

10 Turbulent Drag Reduction in MHD Turbulence

A physical interpretation of the terms in the right-hand side of Eq. (33) are
as follows:

1.
∑

k≤K Tu(k) is the net KE transfer from the u modes outside the sphere to
the u modes inside the sphere due to the nonlinearity (u·∇)u. Equivalently,∑

k≤K Tu(k) = −Πu(K) of Eq. (14).
2.
∑

k≤K Fu(k) is the total energy transfer rate by the interaction force Fu(k)
to u(k) modes inside the sphere.

3.
∑

k≤K Fext(k) is the net KE injected by the external force Fext (red sphere
of Fig. 4). For K > kf ,

∑
k≤K Fext(k) = εinj because Fext = 0 beyond

k = kf .

The u< modes lose energy to u> and B modes via nonlinear interactions.
The term −

∑
k≤K Fu(k) of Eq. (33) represents the net energy transfer from

the u< modes (those inside the sphere) to all the B modes (B< and B>) via
the interaction force Fu(k). We define the corresponding flux ΠB(K) as

ΠB(K) = −
∑
k≤K

Fu(k). (34)

Thus, u< modes lose energy to u> modes, as well as to B modes, via nonlinear
interactions. In addition, u< modes lose energy via viscous dissipation, which
is the last term of Eq. (33). Therefore, under steady state, the kinetic energy
injected by Fext must match (statistically) with the sum of Πu(K), ΠB(K),
and the viscous dissipation rate [37, 40]1. That is,

Πu(K) + ΠB(K) +
∑
k≤K

Du(k) = εinj. (35)

In the inertial range where Du(k) ≈ 0, we obtain

Πu(K) + ΠB(K) ≈ εinj. (36)

In later sections, we show that ΠB(k) > 0 in MHD, QSMHD, polymeric,
and stably-stratified turbulence. Therefore, using Eq. (36) we deduce that for
the same injection rate εinj, Πu(k) in the mixture (with field B) is lower than
that in HD turbulence, that is,

Πu,mix < Πu,HD. (37)

Now we estimate the drag force in the presence of B. As discussed below,
there are several ways to estimate this drag force.

1In this paper we do not discuss the energetics of B field because TDR is related to the energy
fluxes associated with the velocity field.
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Πu(K ) + ΠB(K ) = ϵinj

Πu(K )

ΠB(K )ΠB(K )

B<

u<
u>

B>

u>

B>

Πu(K )

ΠB(K )

K F

K

D
u

D u

DBDB

kx

kx

ky

ky

Fig. 4 The external force injects KE into the small red sphere with the rate of εint. Πu(K)
is the KE flux for the velocity wavenumber sphere of radius K (yellow sphere), and ΠB(K) is
the net energy transfer from u modes inside the sphere to all the B modes. The energy flux
Πu(K) is dissipated with dissipation rates Du. For small wavenumbers and inertial range,
Πu(K) + ΠB(K) ≈ εint. From Verma et al. [11]. Reprinted with permission from AIP.

1. As discussed in Section 2, we average Eq. (24) over small wavenumbers.
Using ∫

LS

dr[Fext · u] =

∫
LS

dr[Fdrag · u] = f2UFdrag,mix. (38)

Under steady state, using Eqs. (9,14) we deduce that∫
LS

dr[Fext · u] = −
∫ kf

0

[Tu(k′) + Fu(k′)]dk′ = Πu(k) + ΠB(k). (39)

Hence,

Fdrag,mix ≈
Πu + ΠB

f2U
≈ εinj

f2U
. (40)

It is observed that in a mixture, U is typically larger than that in HD
turbulence [5, 11]. Computation of f2 may be quite complex, and it is
difficult to compare f1 and f2. Still, considering Umix > UHD, we expect
Fdrag,mix to be weaker than the corresponding drag in HD turbulence. This
is the origin of TDR in the bulk when B field (polymers or magnetic field)
is present.

2. Considering the uncertainties in f2, it is proposed that turbulent drag is
proportional to (u · ∇)u [11]. For MHD turbulence, the force Fu, which is
the Lorentz force, may be treated separately, and (u·∇)u may be considered
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as the drag force. This assumption simplifies the calculation with

Fdrag,mix ≈
Πu

U
. (41)

In a typical scenario, Πu,mix < Πu,HD, and Umix > UHD [5, 11]. Therefore,
we expect that

Fdrag,mix < Fdrag,HD. (42)

Thus, turbulent drag is reduced in the presence of a secondary fields, such
as magnetic field and polymers. Verma et al. [11] adopted this scheme for
the computation of turbulent drag. We will use this scheme throughout the
paper.

In Fig. 5, we present a schematic diagram illustrating TDR in a pipe flow
and in bulk turbulence. An introduction of polymers in a pipe flow weakens the
fluctuations and enhances the mean flow (see Fig. 5(a,b)). Similarly, in bulk
turbulence, polymers and magnetic field can induce strong large-scale U and
weaken the fluctuations in comparison to HD turbulence (see Fig. 5(c,d)).

(a) (b)

(c) (d)
Fig. 5 (a) Mean velocity profile (D profile) and fluctuations (green arrows) in a pipe flow
without polymers. (b) With dilute polymers, the mean flow is enhanced, but the fluctuations
are suppressed. (c) Velocity fluctuations in HD turbulence. (d) With polymers and magnetic
field, the fluctuations (green arrows) are suppressed, but the large-scale U (black arrows) is
enhanced.
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We propose the following drag coefficients to quantify TDR in the bulk:

C̄d1 =
〈Πu〉
U3/L

, (43)

C̄d2 =
〈|(u · ∇)u|〉
U2/L

, (44)

where L is the integral length scale, and U is the large-scale velocity. We
obtain C̄d1 ≈ 1 and C̄d2 ≈ 1 for HD turbulence. However, C̄d1 and C̄d2 for
a mixture are smaller than those for HD turbulence. In subsequent sections,
we will compute the above drag coefficients for a variety of flows, but with an
emphasis on MHD and QSMHD turbulence, and dynamo.

In the next section, we provide a brief introduction to TDR in a turbulent
flow with dilute polymers.

4 TDR in flows with dilute polymers via
energy flux

An introduction of small amount of polymers in a turbulent flow suppresses
turbulent drag [1–11]. As discussed in Section 1, TDR in polymeric turbulence
depends on the boundaries, bulk turbulence, properties of fluids and polymers,
anisotropy, etc. However, in this paper we focus on the TDR due to suppression
of KE flux in the presence of polymers. For detailed discussions on TDR due
to polymers, refer to the references [1–11].

One of the popular models for polymers is finitely extensible nonlin-
ear elastic-Peterlin model (FENE-P) [9, 47]. In this model, the governing
equations for the velocity field u and configuration tensor C are [9, 46, 48]

∂ui
∂t

+ uj∂jui = −∂ip/ρ+ ν∂jjui +
µ

τp
∂j(fCij) + Fext,i, (45)

∂Cij
∂t

+ ul∂lCij = Cil∂luj + Cjl∂lui +
1

τp
[fCij − δij ], (46)

∂iui = 0, (47)

where ρ is the mean density of the solvent, ν is the kinematic viscosity, µ is an
additional viscosity parameter, τp is the polymer relaxation time, and f is the
renormalized Peterlin’s function. In the above equations, the following forces
are associated with u and C (apart from constants) [3, 10, 37, 40, 47]:

Fu,i = ∂j(fCij), (48)

Fu,i(k) =
∑
p

[ikjf(q)Cij(p)] , (49)

Fu(k) = <[Fu,i(k)u∗i (k)] = −c1
∑
p

= [kjf(q)Cij(p)u∗i (k)] , (50)
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Fig. 6 For a polymeric flow with De = 16.2, the energy fluxes Πu(k) and ΠC(k) normalized
with the KE injection rate P , and dissipation rate Du(k) [19]. The injected KE, P , is
transferred to u> and C as Πu(k) and ΠC(k) respectively. The rest of the injected energy is
dissipated. Adapted from a figure from Valente et al. [19]. Reprinted with the permission of
AIP.

where q = k− p, and c1 is a constant. Note that the field C replaces B of Eqs.
(24-26). Using the above equations, we derive the energy flux ΠC(K), which is
the net energy transfer rate from u< to C, as [37, 40]

ΠC(K) =
∑
k≤K

∑
p

−c1= [kjf(q)Cij(p)u∗i (k)] (51)

with q = k− p.
Valente et al. [18, 19] analysed the energy fluxes Πu(k) and ΠC(k) in a

turbulent flow with dilute polymers and observed that ΠC(k) > 0. One of
their figures illustrating Πu(k) and ΠC(k) is reproduced in Fig. 6 [19]. As
shown in the figure, for De = 16.2, ΠC(k)/P (P = total injected power) peaks
at approximately 0.9 when kη ≈ 0.1, where η is Kolmogorov’s wavenumber.
However, Πu(k)/P remains less than 0.1 for all kη. Valente et al. [18, 19] also
reported that Πu(k) and ΠC(k) depend on the Deborah number, De, which
is the ratio of the relaxation time scale of the polymer and the characteristic
time scale for the energy cascade. Notably, ΠC(k) is maximum when De ∼ 1.
Thus, Valente et al. [18, 19] showed that Πu(k) is reduced significantly from
εinj due to the energy transfer from the velocity field to polymers. That is,
Πu(k) < εinj.
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Fig. 7 KE spectra for pure HD turbulence (dashed line with circle) and polymeric turbu-
lence (solid line with squares). At small wavenumbers, Eu(k) with polymers is larger than
that without polymers. From Benzi et al. [7]. Reprinted with permission from APS.

Benzi et al. [7] and Ray and Vincenzi [49] showed that during TDR, the
large-scale KE is enhanced compared to HD turbulence. Figure 7 illustrates
the energy spectra of Benzi et al. for pure HD and polymeric turbulence. In
the figure we observe that at small wavenumbers, Eu(k) is larger for polymeric
turbulence than that for HD turbulence. Hence, we deduce that large-scale U
is enhanced in the presence of polymers. Thais et al. [50] and Nguyen et al. [51]
arrived at similar conclusions using direct numerical simulation of polymeric
turbulence. Based on these observations, we deduce that

Πu,Polymeric < Πu,HD and UPolymeric > UHD. (52)

Therefore, using Fdrag = Πu/U , we deduce that

Fdrag,Polymeric < Fdrag,HD. (53)

Thus, reduction in KE flux leads to a decrease in nonlinearity, and hence, TDR
in polymeric turbulence.

L’vov et al. [52] and others have observed TDR in flows with bubbles.
In a bubbly flow, the KE is transferred to the elastic energy of the bubbles
that leads to TDR. We also remark that in the laminar regime, the polymers
induce additional drag via the term µ∂j(fCij)/τp of Eq. (45). Hence, polymers
enhance the drag in the viscous limit [5]. Also note that in the present review,
we focus on TDR in bulk turbulence and have avoided discussions on boundary
layers, anisotropy, effects of polymer concentration, etc.

Earlier, Fouxon and Lebedev [46] had related the equations of a turbulent
flow with dilute polymers to those of MHD turbulence. In the next section, we
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will show that the energy transfers in MHD turbulence are similar to those in
polymeric turbulence.

5 TDR in MHD turbulence via energy flux

Magnetofluid is quasi-neutral and highly conducting charged fluid, and its
dynamics is described by magnetohydrodynamics (MHD). Our universe is filled
with magnetofluids, with prime examples being solar wind, solar corona, stellar
convection zone, interstellar medium, and intergalactic medium [53–55] .

The equations for incompressible MHD are [53, 54]

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fu(B,B) + Fext, (54)

∂B

∂t
+ (u · ∇)B = η∇2B + FB(B,u), (55)

∇ · u = 0, (56)

∇ ·B = 0, (57)

where u,B are the velocity and magnetic fields respectively; p is the total
(thermal + magnetic) pressure; ρ is the density which is assumed to be unity;
ν is the kinematic viscosity; η is the magnetic diffusivity; Fext is the external
force employed at large scales; and

Fu = (B · ∇)B, (58)

FB = (B · ∇)u (59)

represent respectively the Lorentz force and the stretching of the magnetic
field by the velocity field. Note that Fu and FB induce energy exchange among
u and B modes. In the above equations, the magnetic field B is in velocity
units, which is achieved by Bcgs → Bcgs/

√
4πρ.

The evolution equation for the modal kinetic energy Eu(k) = |u(k)|2/2
is [16, 36, 37, 40–42, 56]

d

dt
Eu(k) = Tu(k) + Fu(k) + Fext(k)−Du(k), (60)

where

Tu(k) =
∑
p

= [{k · u(q)}{u(p) · u∗(k)}] , (61)

Fu(k) = <[Fu(k) · u∗(k)] =
∑
p

−= [{k ·B(q)}{B(p) · u∗(k)}] , (62)

Fext(k) = <[Fext(k) · u∗(k)], (63)

Du(k) = 2νk2Eu(k), (64)
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with q = k− p. Summing Eq. (60) over the modes of the wavenumber sphere
of radius K yields [30, 48, 56]:

− d

dt

∑
k≤K

Eu(k) = −
∑
k≤K

Tu(k)−
∑
k≤K

Fu(k)−
∑
k≤K

Fext(k) +
∑
k≤K

Du(k)

= Πu(K) + ΠB(K)− εinj + total viscous dissipation. (65)

Note that

ΠB(K) = −
∑
k≤K

Fu(k) =
∑
k≤K

∑
p

= [{k ·B(q)}{B(p) · u∗(k)}] . (66)

In Fig. 4, we illustrate ΠB(K) using the red arrows.
Under a steady state (dEu(k)/dt = 0),

Πu(K) + ΠB(K) +
∑
k≤K

Du(k) = εinj. (67)

In the inertial range where Du(k) ≈ 0, we obtain

Πu(K) + ΠB(K) ≈ εinj. (68)

Following similar lines of arguments as in Section 3, we estimate the turbulent
drag in MHD turbulence as

〈Fdrag,MHD〉 ≈ 〈|(u · ∇)u|〉LS ≈
Πu

U
≈ εinj −ΠB

U
. (69)

Researchers have studied the energy fluxes Πu and ΠB in detail for various
combinations of parameters—forcing functions, boundary condition, ν and η
(or their ratio Pm = ν/η, which is called the magnetic Prandtl number). For
example, Dar et al. [16], Debliquy et al. [57], Mininni et al. [17], and Kumar
et al. [58, 59] computed the fluxes Πu and ΠB using numerical simulations
and observed that ΠB > 0 on most occasions. Using numerical simulations,
Mininni et al. [17] showed that Fu(k) < 0, and hence ΠB(k) > 0 (see Fig. 8).

Hence, using Eq. (69) we deduce that

Πu,MHD < Πu,HD. (70)

That is, the KE flux in MHD turbulence is lower than the corresponding flux
in HD turbulence (without magnetic field). In addition, the speed U may
increase under the inclusion of magnetic field. Therefore, using Fdrag = Πu/U ,
we deduce that

Fdrag,MHD < Fdrag,HD. (71)

In this next section, we will explore whether the above inequality holds in
numerical simulations of MHD turbulence.
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Fig. 8 Numerically computed Fu(k) = <[[J×B](k)·u∗(k)] by Mininni et al. [17]. Clearly,
Fu(k) > 0, and hence ΠB(K) > 0. From Mininni et al. [17]. Reproduced with permission
from ApJ.

6 Numerical verification of TDR in MHD
turbulence

Many researchers have simulated MHD turbulence, but TDR in MHD turbu-
lence has not been explored in detail. In this section, we will present numerical
results on TDR from direct numerical simulations (DNS) and shell models.

MHD turbulence exhibits six energy fluxes that are shown in Fig. 9. These
fluxes represent energy transfers from u< and u> to b< and b> [16, 37, 42].
However, as we discussed in Section 3, the relevant fluxes for TDR are Πu and
ΠB . Also, TDR takes place at large scales, hence, we consider energy fluxes
from small wavenumber spheres. In terms of the fluxes of Fig. 9,

Πu(K) = Πu<
u>(K), (72)

ΠB(K) = Πu<
b< (K) + Πu<

b> (K). (73)

As discussed in Section 5, ΠB > 0 [16, 17, 57–60]. Hence, Πu < εinj that leads
to TDR in MHD turbulence. In this section, we will report the energy fluxes
and 〈|(u · ∇)u|〉 for HD and MHD turbulence from DNS and shell models, and
compare them to quantify TDR in MHD turbulence.

It is important to note that the velocity field receives parts of ΠB via the
energy fluxes Πb<

u> and Πb>
u>. However, these transfers are effective at interme-

diate and large wavenumbers. In this review we focus on small wavenumbers,
hence we can ignore these energy transfers. In the following subsection, we
discuss TDR in DNS of MHD turbulence.
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Fig. 9 Six energy fluxes of MHD turbulence: Πu<u>, Πu<b< , Πu<b> , Πb<b>, Πb<u>, Πu>b> . From
Verma [37]. Reproduced with permission from Verma.

6.1 TDR in direct numerical simulation of MHD
turbulence

We solve the nondimensional MHD equations (54-57) using pseudo-spectral
code TARANG [61–63] in a cubic periodic box of size (2π)3. We nondimension-
alize velocity, length, and time using the initial rms speed (U0), box size (2π),
and the initial eddy turnover time (2π/U0) respectively. We employ the fourth-
order Runge-Kutta (RK4) scheme for time marching; Courant-Friedrich-Lewis
(CFL) condition for computing the time step ∆t; and 2/3 rule for dealising.
We perform our simulations on a 2563 grid for Pm = 1/3, 1, 10/3 (the details
in the following discussion). The mean magnetic field B0 = 0. Note that the
2563 grid resolution is sufficient for computing the large-scale Πu,ΠB , and
〈u · ∇u〉. In addition, the low grid resolution helps us carry out simulations
for many eddy turnover times.

For the initial condition, we employ random velocity and magnetic fields
at all wavenumbers. For creating such fields, it is convenient to employ Craya-
Herring basis [64, 65], whose basis vectors for wavenumber k are

ê3(k) = k̂; ê1(k) = (k̂× n̂)/|k̂× n̂|; ê2(k) = k̂× ê1(k) (74)

with n̂ along any arbitrary direction, and k̂ as the unit vector along k. We
choose 3D incompressible flow, hence,

u(k) = u1(k)ê1(k) + u2(k)ê2(k). (75)
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For random initial velocity with the total kinetic energy as Eu, we employ

u1(k) =
√

(Eu/2N3) i (exp(iφ1(k))− exp(iφ2(k))) , (76)

u2(k) =
√

(Eu/2N3) (exp(iφ1(k)) + exp(iφ2(k))) , (77)

where N3 is the total number of modes, and the phases φ1(k) and φ2(k) are
chosen randomly from uniform distribution in the band [0, 2π]. The above
formulas ensure that the kinetic helicity remains zero. We employ Eu = 0.5
for our simulation. A similar scheme is adopted for the random magnetic field
with the initial magnetic energy as 0.25. We carry out the above run for ν =
η = 0.01, or Pm = 1.

We employ random force to the velocity modes in a wavenumber shell (2, 3),
denoted by kf = 2, so as to achieve a steady state [66]. The kinetic-energy
injection rate εinj = 0.4. We carry out the simulation till 29 eddy turnover
times. Note, however, that the flow reaches a steady state in approximately 15
eddy turnover times.

At the end of the above simulation, we perform four independent simula-
tions given below. We take the final state of the above run as the initial state
(t = 0) for the following simulations.

1. MHD1: ν = 0.01, η = 0.03, and hence Pm = 1/3.
2. MHD2: ν = 0.01, η = 0.01, and hence Pm = 1. This is continuation of the

run described above.
3. MHD3: ν = 0.01, η = 0.003, and hence Pm = 10/3.
4. HD: ν = 0.01 with magnetic field turned off.

We carry out the HD and MHD2 simulations till 40 eddy turnover times,
whereas MHD1 and MHD3 runs till 5 eddy turnover times. Subsequently, we
compare the energy fluxes and 〈|(u · ∇)u|〉 of the four runs after they have
reached their respective steady states that occur in several eddy turnover times.
The Reynolds number (Re = UL/ν) for the steady state of the HD run is 457.
For the steady state of the MHD runs with Pm = 1/3, 1, and 10/3, Re = 413,
347, and 338 respectively, while Rm = 137, 347 and 1127 respectively.

In Fig. 10 (left column), we exhibit the time series of KE of the HD run,
and as well as KE, magnetic energies (ME), and the total energies of the
three MHD runs. The corresponding dissipation rates are exhibited in the
right column of Fig. 10. As shown in the figures, all the runs reach steady
states after several eddy turnover times. The KE dissipation rate for the
HD run increases rapidly to 0.4, which is the KE injection rate (εinj). The
KE for the MHD runs with Pm = 1/3, 1, and 10/3 saturate respectively to
approximate values of 0.65, 0.47 and 0.41, but the respective magnetic energies
saturate at approximately 0.07, 0.2 and 0.26. Note that energies for the MHD
runs exhibit significant fluctuations, however, the dissipation rates of the total
energy remain at 0.4.
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Fig. 10 Left column: (a,c,e) Time series of KE of the HD run (dashed red curve); and
KE (solid red curve), magnetic energies (solid green curve), and total energies (solid blue
curve) of the MHD runs for Pm = 1/3, 1, 10/3. Right column: (b,d,f) Corresponding energy
dissipation rates with the same notation.

Now, we report the energy spectra for the velocity and magnetic fields for
a wavenumber k. Numerically, we compute them using

Eu(k) =
1

2

∑
k−1<|k′|≤k

|u(k′)|2, (78)

Eb(k) =
1

2

∑
k−1<|k′|≤k

|b(k′)|2. (79)

In Fig. 11, we exhibit Eu(k) and Eb(k) for the MHD runs, along with Eu(k)
for the HD run. These quantities are averaged over several time frames in the
steady state. We observe that Eu(k) for the HD run is larger than those for
the MHD runs, except at several small wavenumbers for Pm = 1/3 where
Eb(k) > Eu(k).
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Fig. 11 (a,b,c) For MHD runs with Pm = 1/3, 1, 10/3, the KE spectra (solid red curve)
and the magnetic energy spectra (solid green curve). We also exhibit the plots of the KE
spectra of the HD run (dashed red curve).

Further, for the HD and MHD runs, we report the large-scale velocity U ,
integral length scales L, and Reynolds numbers based on Taylor microscale,
Reλ = Uλ/ν, where Taylor microscale λ = (15νU2/ε)1/2 [35, 37]. Following
Sreenivasan [43], we compute U as the rms value for each component of the
velocity field, or

U =

[
2

3

∫
dkE(k)

]1/2

, (80)

whereas the integral length L is computed using

L =

∫
dkk−1E(k)∫
dkE(k)

. (81)

We quantify U in three ways: Urms; and U(K = 1) and U(K = 2), which are
computed using the KE in the wavenumber spheres of radii 1 and 2 respectively.
We list Urms in Table 1. In Fig. 12, we exhibit the time series of Urms, U(K = 1),
U(K = 2), L, and Reλ for the four runs. We observe that Urms, U(K = 1), and
U(K = 2) for the MHD runs are smaller than the corresponding quantities
for the HD run, except for MHD1 (Pm = 1/3) where U(K = 1) is comparable
to that for the HD run. Consequently, Reλ for MHD1 is close to that for the
HD run, but Reλ for the other two MHD runs are smaller than those for the
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Fig. 12 Time evolution of rms velocity (Urms), U(K = 1), U(K = 2), integral length scale
(L), and Reλ for the HD run (dashed red curve) and the MHD runs (solid red curve) for
Pm = 1/3, 1, 10/3. U(K = 1) and U(K = 2) are computed using the KE contained in the
waveumber spheres of radii 1 and 2 respectively.

HD run. The integral lengths L for the three MHD runs are larger than the
corresponding L for the HD run. Hence, the velocity fields are more ordered
in the MHD runs compared to the HD run.

Next, we compute Πu(K) for the HD and MHD runs, as well as ΠB(K) for
the MHD runs. These fluxes exhibit significant fluctuations, hence we average
over several time frames in the steady state. The fluxes, shown in Fig 13,
clearly show that ΠB > 0, indicating energy transfers from the velocity field
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Table 1 For MHD runs with Pm = 1/3, 1, 10/3, numerical values of average KE flux
(〈Πu〉) in the inertial range, rms velocity (Urms), and

〈
C̄d1

〉
. We also list 〈|(u · ∇)u|〉 and〈

C̄d2
〉

for the wavenumber spheres of radii K = 1 and K = 2. The table contains the
corresponding quantities for the HD run. For all the runs, εinj = 0.4

K = 1 K = 2

Pm 〈Πu〉 Urms
〈
C̄d1

〉
〈|(u · ∇)u|〉

〈
C̄d2

〉
〈|(u · ∇)u|〉

〈
C̄d2

〉
HD - 0.35 0.72 0.58 0.1 0.13 0.3 0.37
MHD1 1/3 0.28 0.66 0.65 0.07 0.11 0.3 0.46
MHD2 1 0.25 0.55 0.98 0.06 0.13 0.22 0.49
MHD3 10/3 0.17 0.53 0.8 0.04 0.09 0.17 0.41

to magnetic field at all scales, and that

Πu,MHD < Πu,HD. (82)

Fig. 13 (a,b,c) Plots Πu(K) (solid red curve) and ΠB(K) (solid green curve) for the MHD
runs with Pm = 1/3, 1, 10/3. Plots also illustrate Πu(K) (dashed red curve) for the HD run.

We compute the drag coefficient C̄d1, which is defined in Eq. (43) as
〈Πu〉 /(U3

rms/L), and exhibit its time series in Fig. 14. In Table 1, we list the
average values of C̄d1 for the steady state. We observe that C̄d1 for the steady



Springer Nature 2021 LATEX template

Turbulent Drag Reduction in MHD Turbulence 25

Fig. 14 (a,b,c) Time evolution of the drag reduction coefficient C̄d1 for the HD run (dashed
red curve) and the MHD runs (solid red curve) with Pm = 1/3, 1, 10/3.

state of the HD run is consistent with the results of Sreenivasan [43], thus val-
idating our code and diagnostics. However, C̄d1 for the steady states of the
three MHD runs are larger than that for the HD run. This is because the
decrease in U3

rms for the MHD runs overcompensates the decrease in Πu(K).
Now, we examine the nonlinear term Nu for the HD and MHD runs. Since

the drag force is effective at large scales, we estimate Nu by its rms value for
a small wavenumber sphere of radius K, that is,

〈|(u ·∇) u|〉LS = Nu(K) =

√∑
k≤K

|Nu(k)|2. (83)

In particular, we choose K = 1 and K = 2. In Fig. 15(a,b), we illustrate the
time series of Nu(K) for the HD run (dashed red curve) and the MHD runs
(solid red curve) for K = 1 and K = 2. In Table 1, we list the average values
of Nu(K) for all the runs. We observe that Nu(K) for the three MHD runs
are smaller than Nu(K) for the HD counterpart. Hence, there is a reduction
in 〈|(u ·∇) u|〉LS for MHD turbulence compared to HD turbulence, signalling
TDR in MHD turbulence.

After this, we compute the drag reduction coefficient C̄d2, which is defined
in Eq. (44) as 〈|(u · ∇)u|〉LS /(U

2
rms/L). The time series of C̄d2 for K = 1 and

K = 2 are plotted in Figure 16, and their average values for their steady states
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Fig. 15 (a,b,c) Plots of the time series of nonlinear term (Nu) for spheres of radii (a) K = 1
and (b) K = 2 for the HD run (dashed red curve) and the MHD runs (solid red curve) with
Pm = 1/3, 1, 10/3.

are listed in Table 1. We observe that C̄d2(K = 1) for the MHD runs with
Pm = 1/3 and 10/3 are smaller than that for the HD run for t ' 2. For the
other cases, C̄d2 for MHD runs are larger than those for the HD run.

Thus, for 1/3 ≤ Pm ≤ 10/3, Πu and 〈|(u · ∇)u|〉 for the MHD runs are
smaller than the corresponding values for the HD run. For K = 1, the drag
coefficient C̄d2 exhibits similar behaviour for Pm = 1/3 and 10/3, but not for
Pm = 1. This is in contrast to C̄d1, which is typically larger for MHD runs
than that for the corresponding HD runs.
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Fig. 16 (a,b,c) Time evolution of drag reduction coefficient C̄d2 for sphere of radii (a)
K = 1, and (b) K = 2 for HD turbulence (dashed red curve) and MHD turbulence (solid
red curve) with Pm = 1/3, 1, 10/3.

We will show in Section 8 that QSMHD turbulence, which corresponds
to Pm = 0, exhibits larger U than the respective HD turbulence. Hence,
we expect that MHD runs with very small Pm will yield larger U than the
corresponding HD runs. This conjecture needs to be verified in future. In addi-
tion, dynamo simulations exhibit enhancement in U on the emergence of a
large-scale magnetic field (see Section 7). We will discuss these issues in later
sections.



Springer Nature 2021 LATEX template

28 Turbulent Drag Reduction in MHD Turbulence

In summary, DNS of MHD turbulence exhibits reduction in Πu(k) and
〈|(u ·∇) u|〉LS in comparison to HD turbulence. However, we do not observe
enhancement in U in the MHD runs, at least for 1/3 ≤ Pm ≤ 10/3. We
conjecture that MHD runs with very small Pm may exhibit enhancement in U .

After the above discussion on DNS results on TDR in MHD turbulence, in
the next subsection, we will discuss TDR in the shell model of MHD turbulence.

6.2 Numerical verification of TDR in shell models of
MHD turbulence

In comparison to DNS, shell models have much fewer variables, hence they are
computationally faster than DNS. Therefore, shell models are often used to
study turbulence, especially for extreme parameters. Beginning with Gledzer-
Ohkitani-Yamada (GOY) shell model for HD turbulence [67–69], researchers
have developed several shell models for MHD turbulence [70–73]. In this sub-
section, we report TDR in a shell model of MHD turbulence [11]. Verma et
al. employed a revised version of GOY shell model and computed the drag
forces and nonlinear terms for the HD and MHD runs. They showed that
the turbulent drag in MHD turbulence is indeed reduced compared to HD
turbulence.

In a shell model of turbulence, all the Fourier modes in a wavenumber shell
are represented by a single variable. A MHD shell model with N shells has
N velocity and N magnetic shell variables that are coupled nonlinearly. The
corresponding HD shell model has N velocity shell variables. In this subsection,
we present the results of the shell model of Verma et al. [11].

Verma et al. [11] employed a shell model with 36 shells, with random forcing
employed at shells n = 1 and 2 such that the KE injection rate is maintained at
a constant value [74]. They performed three sets of HD and MHD simulations
with KE injection rates εinj = 0.1, 1.0 and 10.0, and ν = η = 10−6. For time
integration, they used Runge-Kutta fourth order (RK4) scheme with a fixed
∆t. For εinj = 0.1 and 1.0, they chose ∆t = 5× 10−5, but for εinj = 10.0, they
took ∆t = 1 × 10−5. The numerical results are summarized in Table 2. They
carried out the HD and MHD simulations up to 1000 eddy turnover time. For
further details on the model and the numerical method, refer to Verma et al.
[11].

Both HD and MHD simulations reached their respective steady states after
approximately 200 eddy turnover time. Interestingly, Verma et al. [11] observed
that for the same εinj, the KE and U for MHD turbulence are larger than those
for HD turbulence (see Table 2). These observations clearly demonstrate an
enhancement of U in MHD turbulence compared to HD turbulence, as is the
case for turbulent flows with dilute polymers.

The increase in U for the MHD runs compared to the HD runs has its origin
in the energy spectra. Verma et al. [11] computed the average KE spectra
Eu(k) for the HD and MHD runs. These spectra, shown in Fig. 17, exhibit
Kolmogorov’s k−5/3 spectrum. For a given εinj, Eu(k) plots for the HD and
MHD runs almost overlap with each other, except for small wavenumbers
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Table 2 For the shell model runs of HD and MHD turbulence with εinj = 0.1, 1.0, 10.0,
numerical values of inertial-range KE flux Πu, rms velocity U ,
〈|(u · ∇)u|〉 = (

∑
n|Nn[u, u]|2)1/2, C̄d1, and C̄d2. [11].

εinj Πu U 〈|(u · ∇)u|〉 C̄d1 C̄d2

HD 0.1 0.1 0.87 8.77 0.15 11.6
MHD 0.1 0.02 0.92 4.17 0.026 4.93

HD 1.0 1.0 1.88 47.48 0.15 13.4
MHD 1.0 0.21 2.02 23.79 0.026 5.83

HD 10.0 10.0 3.95 271.88 0.16 17.4
MHD 10.0 2.06 4.33 136.44 0.025 7.28
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Fig. 17 Plots of KE spectra Eu(k) for the shell model runs with εinj = 0.1 (red), εinj = 1.0
(green) and εinj = 10.0 (blue). The dashed and solid curves represent the Eu(k) for the
MHD and HD runs respectively. Kolmogorov’s −5/3 scaling (black) fits well in the inertial
range for all the runs. From Verma et al. [11]. Reproduced with permission from AIP.

where Eu(k) for the MHD runs are larger than the HD counterpart. Since the
energy is concentrated at small wavenumbers, we observe that UMHD > UHD.
This is in sharp contrast to DNS results of Section 6 where U and Eu(k) of
the MHD runs with moderate Pm are smaller than the corresponding values
for the HD runs. However, in dynamo simulations, we do observe that U of
MHD turbulence could be larger than that for HD turbulence; this topic will
be discussed in the next section.

Next, using the numerical data of the shell model, Verma et al. [11]
estimated the rms values of (u · ∇)u for the HD and MHD runs using

〈|(u · ∇)u|〉 =

(∑
n

|Nn[u, u]|2
)1/2

. (84)

To suppress the fluctuations, averaging was performed over a large number
of states. As listed in Table 2, 〈|(u · ∇)u|〉 for the MHD runs are suppressed
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Fig. 18 Plots of Πu(k) for εinj = 0.1 (red), εinj = 1.0 (green) and εinj = 10.0 (blue). The
dashed curves represent Πu(k) for the HD runs, whereas the solid curves indicate the same
for the MHD runs. From Verma et al. [11]. Reproduced with permission from AIP.

compared to the corresponding HD runs. These results reinforce the fact that
the nonlinearity 〈|(u · ∇)u|〉 depends critically on the phases of the Fourier
modes; larger U does not necessarily imply larger 〈|(u · ∇)u|〉. We remark
that averaging over the small n would have been more appropriate for the
estimation of 〈|(u · ∇)u|〉, as was done for the DNS.

Verma et al. [11] also computed the average KE fluxes for the HD and MHD
runs [37, 73]. These fluxes are illustrated in Fig. 18, and their average values
in the steady state are listed in Table 2. The figure illustrates that for a given
εinj, the MHD run has a lower KE flux than corresponding HD run. This is
consistent with the suppression of 〈|(u · ∇)u|〉; lower 〈|(u · ∇)u|〉 leads to lower
KE flux. In addition, we compute C̄d1 and C̄d2 using the values of Table 2 and
L = 1. Clearly, C̄d1 and C̄d2 for the MHD runs are lower than those for the
corresponding HD runs, thus indicating TDR in MHD turbulence.

Thus, DNS and the shell model results illustrate that MHD turbulence has
lower 〈|(u · ∇)u|〉 and lower Πu(k) compared to HD turbulence. These results
demonstrate TDR in MHD turbulence. Note, however, that in DNS, U for the
MHD runs with 1/3 ≤ Pm ≤ 10/3 are smaller than the corresponding U for
the HD runs, but it is other way round in the shell model. As argued in Section
6, we expect that U for MHD runs with very small Pm would be larger than
U for the HD runs.

In the next section we will describe TDR in dynamos.

7 TDR in Dynamos

Magnetic field generation, or dynamo process, in astrophysical objects is an
important subfield of MHD. In dynamo process, the velocity field is forced
mechanically, or by convection induced via temperature and/or concentration
gradients. Rotation too plays an important role in dynamo. There are many
books and papers written on dynamo, see e.g. [24, 25]. In this section, we will
discuss only a handful of dynamo studies that are related to TDR.
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Fig. 19 For the Taylor-Green dynamo with the forcing amplitude F0 = 15.2, (a) 3D plot
of the spatially chaotic velocity field for a no-dynamo state; (b) ordered velocity field for a
dynamo state arising due to the suppression of chaos in the presence of a finite mean magnetic
field; (c) ordered magnetic field. From Yadav et al. [27]. Reprinted with the permission of
APS.

Yadav et al. [27] simulated Taylor-Green dynamo for magnetic Prandtl
number Pm = 0.5. They reported many interesting properties, including sub-
critical dynamo transition, as well as steady, periodic, quasi-periodic, and
chaotic dynamo states. Let us focus on an interesting feature of this dynamo
that is related to TDR. In Fig. 19 we exhibit the intensities of the magni-
tudes of the velocity and magnetic fields for the forcing amplitude F0 = 15.2.
Before the dynamo transition, the velocity field is quite turbulent, as shown
in Fig. 19(a). However, after the dynamo transition or emergence of magnetic
field, both the velocity and magnetic fields, shown in Fig. 19(b,c), become more
ordered compared to the pure HD state of Fig. 19(a). Yadav et al. observed
similar features at several other F0’s. For example, at F0 = 15.8, after the
emergence of magnetic field, the velocity fluctuations are suppressed, and the
velocity and magnetic fields become quite coherent (see Fig. 20). The emer-
gence of ordered velocity field is akin to an enhancement of the mean velocity
in a pipe flow with polymers.

The aforementioned simulation of Yadav et al. [27] is somewhat idealized
in comparison to spherical geo- and solar dynamos with rotation and thermal
convection at extreme parameters. Interestingly, spherical dynamos share cer-
tain common features with Taylor-Green dynamo. As shown in Fig. 21, the
velocity field of spherical dynamo [28] is organized in vertical columns, which
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Fig. 20 Plots of the total KE (top panel) and the total ME (bottom panel) for Taylor-
Green dynamo with F0 = 15.8. We observe ordered velocity and magnetic fields after the
onset of dynamo (time > 3000 units). From Yadav et al. [27]. Reprinted with the permission
of APS.

Fig. 21 The radial component of the velocity field in a numerical simulation of geodynamo
by Olson et al. [28]. From Olson et al. [28]. Reproduced with permission from John Wiley
& Sons.

is also a feature of rotating turbulence [29, 75]. It is possible that thermal con-
vection and magnetic field too contribute to the structural organization of the
flow; this feature however needs a careful examination.

Even though 〈|u · ∇u|〉 and the energy fluxes for dynamos have been stud-
ied widely (e.g., [25, 42, 58]), TDR in dynamos has not been analyzed in detail.
It is hoped that a systematic study of TDR in dynamos would be performed
in future.

In the next section, we describe TDR in QSMHD turbulence.
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8 TDR in QSMHD turbulence via energy flux

Liquid metals have small magnetic Prandtl number (Pm), and they are
described using QSMHD equations, which are a limiting case of MHD
equations [20, 21, 76]. The equations for QSMHD with a strong external
magnetic field B0 are [20, 21, 76]

∂u

∂t
+ (u · ∇)u = −∇(p/ρ)− σ

ρ
∆−1[(B0 · ∇)2u] + ν∇2u + Fext, (85)

∇ · u = 0, (86)

where σ is the electrical conductivity, and ∆−1 is the inverse Laplacian oper-
ator. In Fourier space, a nondimensionalized version of QSMHD equations
is

d

dt
u(k) = −i

∑
p

{k · u(q)}u(p)− ikp(k)/ρ−N(cos2 θ)u(k)

−νk2u(k) + Fext(k), (87)

k · u(k) = 0, (88)

where N is the interaction parameter, and θ is the angle between the wavenum-
ber k and B0. The interaction parameter N is the ratio of the Lorentz force
and nonlinear term (u · ∇)u, or

N =
σB2

0L

ρU
. (89)

Using Eq. (87), we derive an equation for the modal energy as

d

dt
Eu(k) = Tu(k)− 2NEu(k) cos2 θ + Fext(k)−Du(k), (90)

where Tu(k) is defined in Eq. (10), and the dissipation induced by Lorentz
term is [21, 76]

Fu(k) = −2NEu(k) cos2 θ < 0. (91)

Hence, the magnetic field induces additional dissipation in QSMHD turbu-
lence.

Equation (91) represents the energy transfers from the velocity field to the
magnetic field at a wavenumber k. A sum of Fu(k) over a wavenumber sphere
of radius K yields the following expression for the energy flux ΠB(K):

ΠB(K) = −
∑
k≤K

Fu(k) =
∑
k≤K

2NEu(k) cos2 θ > 0. (92)
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Fig. 22 From the numerical simulation of QSMHD turbulence by Reddy and Verma [22],
the time series of the normalised KE, E(t)/E0, for N = 5.5, 11, 18, 27, 130, where E0 is the
energy at the final state of N = 0 simulation. For each N , after an application of external
magnetic field, the KE drops suddenly, and then it increases and reaches a statistically
steady value. The asymptotic KE for all the runs with N > 18 are larger than E0. From
Reddy and Verma [22]. Reproduced with permission from AIP.

Thus, the Lorentz force transfers the kinetic energy to the magnetic energy,
which is immediately dissipated by the Joule dissipation; this feature is due to
Pm = 0. As a consequence, for an injection rate εinj, Πu(K) of a QSMHD run
is suppressed compared to Πu(K) of the corresponding HD run. Hence, in the
inertial range,

Πu < εinj. (93)

Therefore, following the same line arguments as in earlier sections, we deduce
that turbulent drag is suppressed in QSMHD turbulence. In addition, the
velocity fields of the MHD runs are less random (or more ordered) compared to
the corresponding HD runs, thus suppressing 〈|(u · ∇)u|〉. Therefore, we expect
the turbulent drag in QSMHD turbulence to be smaller than the corresponding
HD counterpart. In the following discussion, we will describe numerical results
that are consistent with the above predictions.

Reddy and Verma [22] simulated QSMHD turbulence in a periodic box for
N ranging from 1.7 to 220. They employed a constant KE injection rate of
0.1 (in nondimensional units). In fact, the magnetic field B0 was switched on
after the initial HD run was fully developed. After an introduction of B0, KE
first decreases abruptly due to Joule dissipation, and then it increases due to
reorganization of the flow. As shown in Fig. 22, for N > 18, the total KE is
larger than its HD counterpart (N = 0). In this range of N , the flow becomes
quasi two-dimensional with larger U and suppressed turbulent drag. This is
counter-intuitive because we expect the KE to decrease with the increase of
Joule dissipation. However, reorganization of the flow leads to enhancement of
U and TDR in the flow.

In Table 3, we list the rms velocity U as a function ofN . Clearly, U increases
monotonically with N because 〈|(u · ∇)u|〉 and turbulent drag decrease with



Springer Nature 2021 LATEX template

Turbulent Drag Reduction in MHD Turbulence 35

Table 3 In numerical simulations of QSMHD
turbulence by Verma and Reddy [77], rms
velocity (U) for various N ’s. Clearly, U
increase with N .

N 1.7 18 27 220

U 0.39 0.51 0.65 0.87

Fig. 23 From the numerical simulation of QSMHD turbulence by Reddy and Verma [22],
the vorticity isosurfaces for (a) N = 0, (b) N = 5.5, and (c) N = 18. The flow field becomes
anisotropic and ordered with the increase of N . We observe a vortex tube for N = 18. From
Reddy and Verma [22]. Reproduced with permission from AIP.

the increase of N . In Fig. 23 we exhibit the vorticity isosurfaces for N = 0, 5.5,
and 18. As is evident in the figure, the flow becomes quasi-2D and more orderly
with the increase of N .

The above results again indicate that a large U does not necessarily
imply large 〈|(u · ∇)u|〉 because the nonlinear term depends on U and the
phase relations between the velocity modes. In QSMHD turbulence, two-
dimensionalization leads to a reduction in 〈|(u · ∇)u|〉 even with large U . Note,
however, that for a definitive demonstration of drag reduction in QSMHD tur-
bulence, we still need to perform a comparative study of Πu and 〈|(u · ∇)u|〉
for HD and QSMHD turbulence.

Reduced turbulent flux is an important ingredient for drag reduction. Note
that such a reduction does not occur in laminar QSMHD; here, the Lorentz
force damps the flow further. We illustrate this claim for a channel flow. In a
HD channel flow, the maximum velocity at the centre of the pipe is (see Fig. 2)
[13, 39]

UHD = − d2

2νρ

(
dp

dx

)
, (94)
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where d is half-width of the channel (see Fig. 2). However, in a laminar QSMHD
flow, the corresponding velocity is [20, 76, 78]

UQSMHD = − 1

σB2
0

(
∂p

∂x

)
. (95)

The ratio of the two velocities is

UQSMHD

UHD
=

2νρ

σB2
0d

2
=

1

Ha2 , (96)

where Ha is the Hartmann number, which is much larger than unity for a
QSMHD flow. Hence, the velocity in laminar QSMHD is much smaller than
that in the HD channel. In comparison, U increases with N in QSMHD tur-
bulence. Hence, drag reduction is a nonlinear phenomena, which is a visible in
a turbulent flow.

In the next section, we will cover several more examples of TDR.

9 TDR in Miscellaneous Systems

In this section, we briefly describe TDR in stably stratified turbulence, over
smooth surfaces, and in turbulent convection.

9.1 TDR in stably stratified turbulence

Many natural and laboratory flows are stably stratified with lighter fluid
above heavier fluid and gravity acting downwards. The governing equations
for stably-stratified flows under Boussinesq approximation are [13, 29, 30, 79]

∂u

∂t
+ (u · ∇)u = −∇p− Ωρẑ + ν∇2u + FLS, (97)

∂ρ

∂t
+ (u · ∇)ρ = Ωuz + κ∇2ρ, (98)

∇ · u = 0, (99)

where p is the pressure, ρ is the density fluctuation in velocity units, −Ωρẑ is
buoyancy, and Ω is the Brunt-Väisälä frequency, which is defined as [29, 79]

Ω =

√
g

ρm
|dρ̄
dz
|. (100)

Here ρm is the mean density of the whole fluid, dρ̄/dz is the average density
gradient, and g is the acceleration due to gravity. We convert the density in
velocity units using the transformation, ρ→ ρg/(Ωρm). The ratio ν/κ is called
Schmidt number, which is denoted by Sc. Richardson number, Ri, which is a
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nondimensional number, is employed to quantify the ratio of buoyancy and
the nonlinear term (u · ∇)u.

For periodic or vanishing boundary condition and in the absence of
dissipative terms, the total energy,

Eu + Eρ =

∫
dr

1

2
u2 +

∫
dr

1

2
ρ2, (101)

is conserved [29, 40, 79, 80]. Here, Eρ can be interpreted as the total potential
energy. It has been shown that in the inertial range, the associated energy
fluxes obey the following conservation law [40, 81]:

Πu + Πρ = const = εinj, (102)

where Πρ is the potential energy flux, and εinj is the KE injection rate. Note
that under steady state, Πρ equals the energy transfer rate from the velocity
field to the density field. Using the stable nature of the flow, we can argue that
Πρ > 0 [29, 30, 40, 81].

Nature of the stably stratified turbulence depends quite critically on the
density gradient or Richardson number. For moderate density gradient (Ri ≈
1), Bolgiano [82] and Obukhov [83] argued that Πρ is positive and constant,
whereas Πu(k) ∼ k−4/5. For small Richardson numbers, the scaling is closer to
passive scalar turbulence [84], but the flow becomes quasi-2D for large Richard-
son numbers [29, 30]. Here, we present only one numerical result. Kumar et
al. [85] simulated stably stratified turbulence for Sc = 1 and Ri = 0.01, and
observed that in the inertial range, Πρ(k) = const (> 0) and Πu(k) ∼ k−4/5.
See Fig. 24 for an illustration. Researchers have observed that Πρ > 0 for small
and large Ri’s as well [29, 80, 84].

Using the fact that Πρ(k) > 0, following the arguments described in
Section 3, we argue that the turbulent drag will be reduced in stably stratified
turbulence. That is, for the same KE injection rate εinj, Πu(k) and 〈u · ∇u〉
for stably stratified turbulence will be smaller than those for HD turbulence.
We remark that the flux-based arguments presented above are consistent with
the observations of Narasimha and Sreenivasan [38] who argued that stably
stratified turbulence is relaminarized.

In the next subsection, we will discuss TDR experienced by smooth bluff
bodies.

9.2 TDR over smooth bluff bodies

As discussed in Section 2, bluff bodies experience turbulent drag at large
Reynolds numbers. Models, experiments, and numerical simulations reveal
that the turbulent drag on aerodynamic objects is a combination of the viscous
drag and adverse pressure gradient [13–15]. Engineers have devised ingenious
techniques to reduce this drag, which are beyond the scope of this article.
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Fig. 24 Stably stratified simulation with Sc = 1 and Ri = 0.01: plots of KE flux Πu(k),
normalized KE flux Πu(k)k4/5, and potential energy flux Πρ(k) (presented as Πθ(k) in the
figure). From Kumar et al. [85]. Reproduced with permission from APS.

Equation (17) illustrates that the turbulent drag experienced by a bluff
body is a combination of the inertial and viscous forces, and the adverse pres-
sure gradient. However, for bluff bodies like aerofoils and automobiles, the
dominant contributions come from the viscous drag and adverse pressure gra-
dient [14, 15]. Note, however, that the bulk flow above the smooth surface is
anisotropic, and it contains signatures of the surface properties. Hence, the
nonlinear term 〈|u · ∇u|〉 and the drag coefficient C̄d2 could yield interesting
insights into TDR over bluff bodies. Narasimha and Sreenivasan [38] performed
such analysis for a variety of flows. In the following subsection, we will use the
above idea to explain TDR in turbulent thermal convection.

9.3 TDR in turbulent thermal convection

Turbulent convection exhibits interesting properties related to TDR. In this
subsection, we consider Rayleigh-Bénard convection (RBC), which is an ide-
alized setup consisting of a thin fluid layer confined between two thermally
conducting plates separated by a distance d. The temperatures of the bottom
and top plates are Tb and Tt respectively, with Tb > Tt.

The equations for thermal convection under Boussinesq approximation
are [86]

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ αgT ẑ + ν∇2u, (103)

∂T

∂t
+ (u · ∇)T = κ∇2T, (104)

∇ · u = 0, (105)

where T is the temperature field; α, κ are respectively the thermal expansion
coefficient and thermal diffusivity of the fluid; and g is the acceleration due
to gravity. The two important parameters of turbulent thermal convection are
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thermal Prandtl number, Pr = ν/κ, and Rayleigh number,

Ra =
αgd3(Tb − Tt)

νκ
. (106)

In turbulent thermal convection, the velocity field receives energy from
the temperature field via buoyancy. Note that thermal plumes drive thermal
convection. This feature is opposite to what happens in polymeric, MHD,
and stably stratified turbulence, where the velocity field loses energy to the
secondary field. Yet, there are signatures of TDR in turbulent convection,
which is due to the smooth thermal plates. Hence, the mechanism of TDR in
turbulent thermal convection differs from that in polymeric, MHD, and stably
stratified turbulence.

In the following, we list some of the results related to TDR in thermal
convection.

1. Kraichnan [87] argued that turbulent thermal convection would become
fully turbulent or reach ultimate regime at very large Rayleigh number. In
this asymptotic state, the effects of walls are expected to vanish, similar to
the vanishing of boundary effects in the bulk of HD turbulence [35, 36, 88].

Kraichnan [87] predicted that Nu ∝ Ra1/2 in the ultimate regime. However,
experimental observations and numerical simulations reveal that for Ra /
1013, Nu ∼ Raβ with β ranging from 0.29 to 0.33 [30, 89, 90]. This reduction
in the Nu exponent from 1/2 to approximately 0.30 is attributed to the
suppression of heat flux due to the smooth thermal plates, boundary layers,
and other complex properties [30, 89–92].

2. Pandey et al. [31] performed numerical simulations of RBC for Pr = 1 and
Ra ranging from 106 to 5× 108, and showed that

Nonlinear term

Viscous term
=
|u · ∇u|
|ν∇2u|

∼ ReRa−0.14. (107)

Note that the above ratio is Re for HD turbulence. Thus, nonlinearity
(〈|u · ∇u|〉) is suppressed in turbulent thermal convection at large Ra.

3. Pandey et al. [31] and Bhattacharya et al. [32, 93] showed that the viscous
dissipation rate (εu) and thermal dissipation rate (εT ) depend on Rayleigh
and Prandtl numbers, and that εu and εT are suppressed compared to HD
turbulence. For moderate Pr and large Ra,

εu ∼
U3

d
Ra−0.2, (108)

εT ∼
U(Tb − Tt)2

d
Ra−0.2. (109)

Interestingly, for small Prandtl numbers, εu ∼ U3/d with very small Ra-
dependent correction [32, 93]. See Fig. 25 for an illustration.
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Fig. 25 Plots exhibiting the Ra and Pr dependence of the viscous and thermal dissipation
rates. For moderate Pr, εu, εT ∼ Ra−0.20. From Bhattacharya et al. [32]. Reproduced with
permission from AIP.

Fig. 26 A LSC observed in 2D RBC by Sugiyama et al. [95]. The arrows represent the
velocity field, whereas the colors represent the temperature of the fluid, with red as hot and
blue as cold fluid. From Sugiyama et al. [95]. Reproduced with permission from APS.

It is well known that a large-scale circulation (LSC) is present in turbu-
lence convection (see Fig. 26) [94–98]. As we show below, the suppression of
nonlinearity (〈|u · ∇u|〉) and turbulent drag in RBC is related to this LSC and
the smooth walls.

As shown in Fig. 26, the flows near the top and bottom plates have sim-
ilarities with those near a flat plate. The LSC traverses vertically along the
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Fig. 27 In numerical simulation of Zhu et al. [99], the velocity (a) and temperature (b)
profiles in wall units for various Ra’s. The dashed lines illustrate the viscous sublayer and
the log-layer. A log layer is observed for the velocity field, but not for the temperature field.
From Zhu et al. [99]. Reproduced with permission from APS.

vertical walls, but moves horizontally along the thermal plates. However, for
a typical RBC flow, the horizontal extent of LSC is shorter than that in the
flow past a flat plate. Researchers have argued that for large Rayleigh numbers
(Ra ' 1013), the boundary layers exhibit a transition to a log layer, which is
a signature of transition from viscous to turbulent boundary layer, as in flow
past a flat plate [12–14, 30, 89]. For example, Zhu et al. [99] simulated 2D RBC
and showed that above the viscous layer, the normalized velocity field varies
logarithmically with the normalized vertical distance. In particular, Zhu et al.
[99] observed that u+ ∝ log(y+) for y+ ' 10 (see Fig. 27). Note, however, that
the thermal boundary layers do not show transition to log layer [99]. Several
other experiments exhibit similar behaviour [100].

Since the boundary layers of turbulent thermal convection have similar
properties as those over a flat plate, we can argue that the nonlinearity 〈u · ∇u〉
is suppressed in turbulent convection. This is the reason why the dissipa-
tion rates and turbulent drag in turbulent convection are smaller than the
corresponding quantities in HD turbulence. Verma et al. [101] studied the cor-
relation 〈uzθ〉, where θ is the temperature fluctuation, and showed that for
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moderate Pr,
〈uzθ〉 =

√
〈u2
z〉
√
〈θ2〉(PrRa)−0.22. (110)

Note that
√
〈u2
z〉 ≈ Ra1/2 and

√
〈θ2〉 ≈ (∆T ). Therefore, the correction

(PrRa)−0.22 of the above equation leads to 〈uzθ〉 ∼ Ra0.28 or Nu ∼ Ra0.28.
Verma et al. [30, 101] argued that at very large Ra, the corrections would dis-

appear and the flow will approach the ultimate regime with 〈uzθ〉 ∼ Ra1/2 or

Nu ∼ Ra1/2.
Note, however, that no experiment and numerical simulation has been able

to achieve the ultimate regime, thus the ultimate regime remains a conjecture
at present [90, 99, 102, 103], even though several experiments and numerical
simulation report a transition to the ultimate regime with the Nu exponent
reaching up to 0.38 (but lower than 1/2) [99, 102], while some others argue
against the transition to the ultimate regime [90, 103]. It is interesting to
note that for rough thermal plates, the heat transport is enhanced because of
increase in turbulence due to the roughness [104].

RBC with periodic boundary condition exhibits Nu ∝ Ra1/2 due to the
absence of boundary layers [101, 105]. In addition, RBC with small Prandtl
numbers too exhibit properties similar to those of periodic boundary condition.
This is because the temperature gradient is linear in the bulk in both these
systems [93, 106].

In summary, turbulent thermal convection exhibits suppression of nonlin-
earity (〈|u · ∇u|〉) and KE flux compared to HD turbulence. This suppression,
which occurs essentially due to the smooth walls, leads to TDR in thermal
convection.

10 Discussions and conclusions

Experiments and numerical simulations show that turbulent flows with dilute
polymers exhibit TDR. Many factors–boundary layers, polymer properties,
bulk properties of the flow–are responsible for this phenomena [1–11]. There
are many interesting works in this field, however, in this review, we focus
on the role of bulk turbulence on TDR. The KE flux, Πu(k), is suppressed
in the presence of polymers. This reduction in Πu(k) leads to suppression of
nonlinearity 〈u · ∇u〉 and turbulent drag.

MHD turbulence exhibits very similar behaviour as the polymeric tur-
bulence [11]. Here too, Πu(k) is suppressed because a major fraction of the
injected KE is transferred to the magnetic field. Consequently, 〈u · ∇u〉 and
the turbulent drag are suppressed in MHD turbulence. For the same KE injec-
tion rate at large scales, Πu(k) and 〈u · ∇u〉 for MHD turbulence are smaller
than the respective quantities of HD turbulence. These properties are borne
out in DNS and shell models.

The KE flux Πu(k) of stably stratified turbulence too is suppressed com-
pared to HD turbulence. Hence, we expect TDR in stably stratified turbulence.
Narasimha and Sreenivasan [38] made a similar observation. We need detailed
numerical simulations to verify the above statement. An interesting point to
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note that for the above three flows,

Πu(k) + ΠB(k) = const = εinj, (111)

where ΠB(k) represents the energy flux associated with the secondary field B,
which could be polymer, magnetic field, or density. The constancy of the sum
of fluxes in Eq. (111) arises due to the stable nature of system [29, 40, 81]. The
above constancy also represents a redistribution of the injected kinetic energy
at large scales to (a) the velocity field in the intermediate scales, and to (b) the
secondary field. Positive ΠB implies that Πu(k) < εinj which leads to TDR in
the flow. Thus, TDR is intimately related to the conservation law of Eq. (111).

Another important feature of TDR is that the mean flow or large scale
velocity (U) is enhanced in the presence of polymers or magnetic field. This is
because the velocity field gets more ordered under TDR. Suppression of Πu(k)
and 〈u · ∇u〉 even with strong U is due to the correlations in the velocity
field. An emergence of ordered U is also observed in dynamo and QSMHD
turbulence. Unfortunately, DNS of MHD turbulence with magnetic Prandtl
number Pm = 1/3, 1, and 10/3 do not show enhancement in U compared to
the respective HD turbulence. Based on the findings of QSMHD turbulence
(Pm ≈ 0) and dynamo, we conjecture that U of MHD turbulence with very
small Pm will be larger than that of corresponding HD turbulence.

TDR is also observed in turbulent thermal convection. This observation is
based on the suppression of viscous and thermal dissipation rates, and that of
nonlinearity 〈u · ∇u〉 [31, 32, 37]. Note, however, that unlike MHD, polymeric,
and stably-stratified turbulence, Πu(k) for turbulent thermal convection is not
suppressed due to the unstable nature of thermal convection [40, 81]. Therefore,
the mechanism for TDR in turbulent thermal convection differs from that for
TDR in MHD, polymeric, and stably-stratified turbulence. In this review, we
argue that TDR in turbulent thermal convection occurs due to the smooth
thermal plates. Near the thermal plates, the large-scale circulation (LSC) are
akin to the flow past a flat plate. This feature has important consequences on
the possible transition to the ultimate regime in thermal convection.

The enhancement of U under TDR is similar to the increase in the mean
flow during relaminarization. Narasimha and Sreenivasan [38] showed rever-
sion of flows from random to smooth profiles by relaminarizing agencies, which
could be stably stratification, rotation, thermal convection, etc. Figure 28 illus-
trates interactions between the mean flow and turbulence via a relaminarizing
agency. In this figure, the channels 1, 2, and 3 represent complex interac-
tions between the mean flow and fluctuations during relaminarization, whereas
channel 0 represents these interactions in the HD turbulence. The arguments
of Verma et al. [11] have certain similarities with those of Narasimha and
Sreenivasan [38].

In summary, this review discusses a general framework based on KE flux to
explain TDR in a wide range of phenomena—polymeric, MHD, QSMHD, and
stably stratified turbulence; dynamo; and turbulent thermal convection. This
kind of study is relatively new, and it is hoped that it will be explored further
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Fig. 28 Interactions between the mean flow and turbulence via relaminarizing agency. The
interaction channels 1,2,3 relaminarize the flow in comparison to the HD turbulence where
interactions occurs via channel 0. From Narasimha and Sreenivasan [38]. Reproduced with
permission from K. R. Sreenivasan.

in future. We also expect TDR to emerge in other systems, such as drift-wave
turbulence, astrophysical MHD, rotating turbulence, etc. Such a study has an
added benefit that TDR has practical applications in engineering flows, liquid
metals, polymeric flows, etc.
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